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Abstract The computation of rotational energy transfer in nonreactive molecular
collisions requires expanding the orientation dependence of the interaction potential
over an appropriate complete set of orthonormal functions. We show that the use of
random grids for the sampling of the angular geometries combined with the Monte
Carlo theorem allows to estimate the mean accuracy on each expansion term deter-
mined by a least squares fit. The interest of our approach is illustrated by an application
to the H2O–H2 system, of great astrophysical interest.

Keywords Rotational energy transfer · Potential energy surface · Angular
expansion · Monte Carlo theorem

1 Introduction

The most accurate method for calculating rotational energy transfer in (nonreactive)
molecular collisions is the quantum close coupling approach. This method consists
in solving the time independent Schrödinger equation by expanding the total wave
function in a basis set of rotation functions of the colliding partners and partial wave
expansion for the collision coordinate. In the resulting coupled second-order differen-
tial equations, the coupling comes from the orientation dependence of the interaction
potential, or potential energy surface (PES). The computation of the necessary matrix
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elements of the potential over the expansion basis functions is usually performed by
expanding the orientation dependence of the PES over a complete set of appropriate
analytical orthonormal functions, see e.g. [1].

High accuracy PES are generally obtained using ab initio quantum chemistry meth-
ods such as the coupled cluster theory, see e.g. [2,3] for the H2O–H2 system. In
order to reproduce all the details of such a PES, the interaction should ideally be
expanded over an infinite set of basis functions. However, only a limited number of
expansion terms (∼100) are needed for scattering calculations at low collision energy
(Ecoll < 1000 cm−1). These terms correspond to projections of the PES on the basis
functions of highest angular symmetry. If the potential energy could be easily esti-
mated for any arbitrary orientation of the partners, it would be straightforward to
compute the expansion terms by standard quadrature formulae or by a least squares
fit of the PES on a truncated expansion of basis functions. However, the computation
of a single potential energy point at high accuracy, i.e. with a precision ∼ 1 cm−1,
is usually computer time consuming and the PES can be obtained only for a reduced
set of orientations. For atom-molecule interactions which depend on only two angles
(orientation of the intermolecular vector with respect to the rigid molecule frame), the
main expansion terms can be obtained using a reasonable number of PES data points,
of the order of 10–100 independent orientations for each intermolecular distance. For
molecule-molecule interactions the number of PES data points can rise to thousands
of orientations. Sheldon Green [4] has shown how slow the convergence of Gauss
quadratures can be when there are as many as four angular degrees of freedom. From
a general point of view, the difficulty is to solve an inverse problem numerically ill
conditioned. We note that methods based on the singular value decomposition (SVD)
have been developed in similar contexts, e.g. the correction of an existing PES using
experimental spectroscopic data, see [5].

The present work focuses on optimizing the number and the distribution of PES
data points needed for a given expansion basis set. In the case of a random distribution,
we show that is is possible to estimate, using the Monte Carlo theorem, the accuracy
on each expansion term. The general method and equations are derived in Sect. 2. An
application to the H2O–H2 system is presented in Sect. 3. Conclusions are drawn in
Sect. 4.

2 General method

2.1 Angular expansion of the interaction potential

The interaction potential energy between two rigid molecules, can be expanded over
a given set of angular functions as follows:

V (R; r̂) =
∑

i

vi (R)ti (r̂) (1)

where R is the intermolecular distance and r̂ designates any angular coordinates on the
hypersurface. Practically for molecular interactions r̂ defines the relative orientation
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angles between the two molecules. In what follows the dependence on R will be
dropped since we focus only on the angular dependence of the PES.

We consider (ti (r̂))(i=1;∞) is a complete set of orthonormal basis functions. For
a given collision energy only a restricted set of n expansion coefficients vi=1,n are
needed.

The exact theoretical potential can be expanded on the reduced basis set of n func-
tions (ti (r̂))(i=1;n) as follows:

V (r̂) =
n∑

j=1

v j t j (r̂) + Rth
n (r̂) (2)

Rth
n (r̂) is the theoretical residual function which is orthogonal to all basis functions

(ti (r̂))(i=1;n) selected in the expansion.
The exact expansion coefficients can be expressed as:

vi =
∫

ti (r̂)V (r̂)dr̂ =
∑

j=1,n

δi j

∫
t j (r̂)(V (r̂) − Rth(r̂))dr̂ (3)

In practice ab initio PES calculations can only be perfomed on a predefined set of
N orientations of the molecules r̂k (k = 1, ..N ). The expansion coefficients vi are
derived from this potential surface sampling. From the potential expansion on each
node r̂k=1,N we derive a set of N equations with n unknowns v j .

V (r̂k) =
n∑

j=1

v j t j (r̂k) + Rth
n (r̂k) (4)

The vi coefficients can be obtained by inversion of system (4), provided that the nodes
grid size is large enough N > n. We can define a scalar product of two functions f
and g known on the N (r̂k) grid nodes as:

〈 f |g〉N =
∑

k=1,N

wk f (r̂k)g(r̂k)

〈 f |g〉N is a quadrature approximation of the integral
∫

f (r̂)g(r̂)dr̂ on the nodes r̂k

with weights wk . From this scalar product one can obtain an overlap matrix SN which
gives the basis functions scalar products:

SN
i j = 〈ti |t j 〉N

The exact potential coefficients vi can be expressed as a function of the residual
potential and the overlap S matrix.

vi = S−1
i j

(
〈t j |V 〉N − 〈t j |Rth

n 〉N

)
(5)
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2.2 Least square fit approximation and optimisation of the angular sampling

Different fitting procedures are commonly used based on different approximations
of the residual potential Rth and of the overlap matrix Si j . In the least square fit
approximation the potential terms vi are approximated by αi :

V (r̂) =
∑

i=1,n

αi ti (r̂) + RN (r̂)

RN (r̂) is the potential residual which minimises the residual mean square (rms). Thus,
RN (r̂) is orthogonal to all basis functions 〈ti |RN 〉N = 0 and αi can be expressed as

αi =
∑

j=1,n

S−1
i j 〈t j |V 〉N

The error on these coefficients is then

ei = αi − vi =
∑

j=1,n

S−1
i j 〈t j |Rth

n 〉N (6)

These coefficients are a good approximation for the vi provided the theoretical resid-
ual function is orthogonal to all t j basis functions. If the residual function can not
be neglected, the potential fit is usually validated by rms deviation between the exact
interaction energy and the approximated potential expansion at the nodes. In the case
of least square fit, a too small sampling of the PES often reduces the rms at the cost
of spurious non physical oscillations of the fit. In particular these oscillations occur
for an ill-behaved sampling of the expansion basis functions on the PES. The overlap
matrix Si j (ideally close to δi j ) is then ill conditionned. Therefore we suggest to test
before hand (prior to any PES computation) the quality of the PES sampling for a
chosen set of expansion basis functions. A simple minimal criterium is to ensure that
||S−1|| ∼ 1.

However, even for an good sampling of all basis functions of a chosen expansion
basis ti=1,n , such as Si j = δi j , the potential residual can affect the expansion coeffi-
cients. Equation (6) shows how the residual Rth

n contributes to the coefficient error ei .
Unfortunately the potential residual can only be estimated after hand from the fit rms.
The other alternative to reduce the error ei is to extend the expansion basis size ti=1,n′
so that the residual function should be a small correction to the analytical expansion.
A new PES node grid (r̂k=1,N ′) might be necessary to ensure a good sampling of all
added basis functions. This procedure may be iterated.

Nevertheless, the number of data grows rapidly as the surface sampling is extended.
Fitting procedure should be extensive on node distribution. Quadratures approxima-
tions based on orthogonal polynomials (such as Gauss quadratures) require one specific
node distribution for each chosen potential fit basis size n. On the contrary quadratures
based on irregular node distribution (as random quadratures) are extensive. Overall for
many dimension problems irregular node distributions are necessary as any tensorial
product of one dimension grid grows exponentially with the number of degrees of
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freedom. Among all irregular distributions we consider in the present work random
node grids. Random grids allow to estimate the fit error from the 1/

√
N convergence

of random quadratures. We discuss in the following section the error estimation of a
least square fit based on a random surface sampling.

2.3 Expansion error estimator for random samplings

For any random sampling all nodes are equivalent and the weight (wk) is uniform
over the whole surface wk = τ/N = ∫

dr̂/N . The Monte Carlo theorem gives a
statistical estimate of the random quadratures 〈ti |Rth

n 〉N [6]. In this section we show
how to estimate the expansion term error as a function of the potential residual mean
square and the overlap matrix S of the basis functions on the PES grid.

The least square fit error can be written as:

eαi = S−1
i j 〈t j |Rth

n 〉N = S−1
i j e′

i

Each coefficient e′
i is the random quadrature of the (ti Rth

n ) function. Therefore the
Monte Carlo theorem gives a statistical estimate of e′

i proportional to 1/Nα with
α = 0.5 for a purely random set of points.

e′
i =

∑

k

τ

N
ti (r̂k)Rth

n (r̂k)

∼
∫

ti (r̂)Rth
n (r̂)dτ ± 1

Nα

√√√√τ 2

N

∑

k

t2
i (r̂k)Rth2

n (r̂k) −
(

∑

k

τ

N
ti (r̂k)Rth

n (r̂k)

)2

∼
∫

ti (r̂)Rth
n (r̂)dτ ± 1

Nα

√√√√τ 2

N

∑

k

t2
i (r̂k)Rth2

n (r̂k) − e′2
i

An overestimation of t2
i (r̂k) is given by T 2

i ∼ Maxk |t2
i (r̂k)|.

e′
i ∼ 1

Nα

√√√√T 2
i

τ 2

N

∑

k

Rth2
n (r̂k) − e′2

i

e′
i ∼ 1

Nα

√
T 2

i τ 2rmsth2 − e′2
i

rmsth is the theoretical residual mean square of the exact potential fit. We show below
how it depends on the approximate least square fit rms, on the overlap matrix S and
on the error coefficients ei .

123



J Math Chem (2012) 50:588–601 593

rmsth2 = 1

N

N∑

k=1

Rth2

n (r̂k)

= 1

N

N∑

k=1

⎛

⎝RN (r̂k) −
n∑

j=1

e j t j (r̂k)

⎞

⎠
2

= rms2 + 1

τ

n∑

j, j ′=1

e j S j j ′e j ′

= rms2 + 1

τ

n∑

j, j ′=1

e′
j S−1

j j ′ e
′
j ′

We obtain an estimate of each e′
i coefficient:

e′2
i ∼ 1

N 2α

⎛

⎝T 2
i

⎛

⎝τ 2 rms2 + τ
∑

j j ′
e′

j S−1
j j ′ e

′
j ′

⎞

⎠ − e′2
i

⎞

⎠

This expression couples the error e′
i to all other coefficients e′

j . Therefore we choose

to estimate the error coefficients root mean square or the error norm ||e′||2∞ = ∑
i e′2

i :

||e′||2∞ ≤ 1

N 2α

⎛

⎝
n∑

i=1

T 2
i

⎛

⎝τ 2 rms2 + τ
∑

j j ′
e′

j S−1
j j ′ e

′
j ′

⎞

⎠ −
n∑

i=1

e′2
i

⎞

⎠

≤ 1

N 2α

(
n∑

i=1

T 2
i

(
τ 2 rms2 + τ < e′|S−1e′ >∞

)
−

n∑

i=1

e′2
i

)

To simplify the expression we define T as

T 2 = 1

n

n∑

i=1

Maxk

(
t2
i (r̂k)

)
= 1

n

n∑

i=1

T 2
i

We obtain the algebric expression for ||e′||2∞:

||e′||2∞ ≤ 1

N 2α

(
nT 2

(
τ 2 rms2 + τ < e′|S−1e′ >∞

)
− ||e′||2∞

)
(7)

The Schwarz theorem gives an overestimate of < e′|S−1e′ >∞

< e′|S−1e′ >∞≤ ||S−1|| ||e′||2∞
where the S−1 matrix norm is chosen as it’s maximum eigenvalue:

||S−1|| = Maxi |λi | (8)
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Thus

||e′||2∞ ≤ 1

N 2α

(
n T 2 τ 2 rms2 + ||e′||2∞(||S−1|| n T 2 τ − 1 )

)

and provided that

ρ(n, N ) = | (||S−1|| n T 2 τ − 1
) |

N 2α
< 1

we obtain

||e′||2∞ ≤ 1

N 2α
n T 2 τ 2 rms2

(
1 − 1

N 2α

(
||S−1|| n T 2 τ − 1

))−1

The two error functions e(r̂) and e′(r̂) are related by

e = S−1e′

||e||2∞ = ||S−1e′||2∞ ≤ ||S−1||2 ||e′||2∞
Finally:

||e||2∞ ≤ ||S−1||2 1

N 2α
n T 2 τ 2 rms2 (1 − ρ(n, N ))−1

We obtain an explicit upper limit of ||e||∞

||e||∞ ≤
√

n

Nα
τ T rms ||S−1|| (1 − ρ(n, N ))−1/2

If we consider that all basis function are normalized to unity we get an approximation
of T ∼ 1/

√
τ and a more practical error estimator:

||e||∞ ∼
√

nτ

Nα
rms ||S−1|| (1 − ρ(n, N ))−1/2

The mean error on each expansion coefficient can be estimated as:

ei ∼ ||e||∞/
√

n (9)

∼
√

τ

N
rms ||S−1|| (1 − ρ(n, N ))−1/2 (10)

with

ρ(n, N ) = | (||S−1|| n − 1
) |

N 2α
< 1

123



J Math Chem (2012) 50:588–601 595

and ||S−1|| is chosen as the maximum S−1 eigenvalue. We obtain a convergence cri-
terium ρ(n, N ) < 1 which depends only on the given set of expansion basis functions
(ti )n and on the chosen random grid nodes (r̂k)N .

For an ideal set of angular geometries the overlap S matrix and its inverse S−1 are
close to the unit matrix. An ill conditionned sampling of the basis functions is charac-
terized by very low eigenvalues of the S matrix, very large eigenvalues and therefore
a very large norm of the S−1 matrix. As a result, given an expansion set of n basis
function, we can optimize the distribution of N angular geometries by monitoring the
value of S−1 and ρ(n, N ) for any set of basis functions. The final error estimate, Eq. 9,
is proportional to the residual mean square. Therefore for each set of N potential data
there is an optimal expansion basis for which the rms is minimum while the S matrix
remains well conditioned. For such expansion basis set (ti )n , the mean error on each
expansion term is optimized.

3 Application to the H2O–H2 system

The H2O–H2 interaction provides a very interesting system to assess the interest of the
diagnostic tools presented in the previous section. The H2O–H2 system is of particu-
lar interest in astrophysics as the observed intensities of the water lines in the dense
interstellar medium are very strongly linked to the excitation of H2O by H2 [7]. As
the computation of collisional excitation rate coefficients requires the determination
of an intermolecular potential energy surface, the accuracy of the fitting procedure is
a key ingredient of the theoretical evaluation.

3.1 Ab initio quantum chemical calculations

There have been several ab initio PES developed for H2O–H2 [8,9,3] and there also
exists a number of experimental results which can be used to probe the accuracy of the
available potential surfaces, see e.g. the calculations of the rovibrational states of the
complex [10,11] or the molecular beam experiments of Belpassi et al. [12]. Dubernet
et al. [13] also discussed the influence of the H2O–H2 PES on the rotational excitation
of H2O and have shown that PES effects are particularly important at low temperatures
(T < 20 K).

The most accurate H2O–H2 intermolecular potential has been calculated by Valiron
et al. [3] and has been used by several authors to compute rotational excitation rate
coefficients [7,14–17]. The PES of Valiron et al. include nine degrees of freedom. In
the present work, only the rigid-rotor, five dimensional, reference PES at the CCSD(T)
level of theory will be discussed. This PES was computed for 25 intermolecular dis-
tances between 3 and 15 au and 3,000 random angular geometries for each distance.
In the following, we will also discuss a set of CCSD(T) data points obtained at regular
angular geometries. These points were not employed by Valiron et al. Full details on
the monomer geometries and basis sets can be found in Valiron et al. [3].

A previous H2O–H2 PES was computed by Phillips et al. [8] and was also employed
for rotational excitation studies [18,19]. Phillips et al. computed the intermolecu-
lar potential between H2O and H2 for a total of 722 geometries using MP4(SDTQ)
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perturbation theory. The resulting points were fitted to a 48 term angular expansion.
We note that when good convergence is obtained, it is expected that MP4(SDTQ) and
CCSD(T) calculations are similar [20]. The accuracy of the reference PES of Valiron
et al. [3] should be therefore comparable to the results obtained by Phillips et al. [8].
However, it is important to note that Phillips et al. [8] performed their global fit from
ab initio calculations on a restricted regular angular grid (see below). They used a three
step process based on interpolation to generate the potential at additional orientations,
then interpolation at each orientation to get a finer radial grid, and finally a linear least
squares fit to the expanded data set. It is therefore not possible to directly compare our
procedure with their fit as their final grid is not known.

3.2 Expansion of the H2O–H2 interaction

The discussion below focuses on 2 intermolecular distances, namely R = 6 and
5 au. These 2 distances were chosen in order to investigate the short-range part of the
H2O–H2 interaction which is highly anisotropic. We note that the global minimum of
the reference (uncorrected) PES of Valiron et al. is at R = 5.9 au with a well depth of
−209 cm−1. We used the coordinate conventions of Phillips et al. [8] which define θ, φ

and θ ′, φ′ as the collision direction and the H2 orientation relative to the water mole-
cule body-fixed axis system. In terms of these relative coordinates, the intermolecular
potential can be written as [8]

V (R, θ, φ, θ ′, φ′) =
∑

vl1m1l2l(R)tl1m1l2l(θ, φ, θ ′, φ′) (11)

with

tl1m1l2l(θ, φ, θ ′, φ′) = αl1m1l2l(1 + δm10)
−1

∑ (
l1 l2 l
r1 r2 r

)
Yl2r2(θ

′, φ′) ∗ Ylr (θ, φ)

∗
[
δm1r1 + (−1)l1+m1+l2+lδ−m1r1

]

where αl1m1l2l is the normalization factor [3]:

αl1m1l2l = [2(1 + δm10)
−1(2l1 + 1)−1]−1/2 (12)

The integer indices l1, m1, l2 and l refer to the tensor ranks on the angle dependence
of the H2O orientation, the H2 orientation and the collision vector orientation, respec-
tively. The sum is over r1, r2, r . As discussed by Phillips et al. [8], the symmetry
with respect to the reflection of H2 in the H2O plane is explicitly taken into account
by the phased sum over ±m1. In the rigid-rotor approximation, the C2v symmetry
of H2O further requires that m1 be even. The homonuclear symmetry of H2 similarly
constrains l2 to be even. It should be noted that the correspondence between the expan-
sion angular coefficients vl1m1l2l(R) and their counterpart in terms of the electrostatic,
induction and dispersion contributions has been given by Stone et al. [21].

In order to investigate the influence of the angular grid, we used the same set of
angular basis functions as Phillips et al [8]. These include the symmetry-allowed terms
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Table 1 Angular coefficients vl1m1l2l (in cm−1) at a H2O–H2 intermolecular separation R = 6 au

l1m1l2l vl1m1l2l (R)a vl1m1l2l (R)b vl1m1l2l (R)c

0000 −376.95 −345.34 −343.17

1001 114.30 131.59 116.31

1023 704.66 726.29 728.14

2202 −168.00 −127.09 −147.76

2224 542.25 533.23 591.77

3025 −102.40 −86.206 −121.60

3225 209.03 209.88 215.72

4226 64.579 64.691 59.794

A 2618.8 2773.2 2380.8

R 713.57 894.24 399.74

a Fit obtained by Phillips et al. [8], b fit obtained from our CCSD(T) calculations with a (small) angular
grid of 75 angular geometries taken from Phillips et al. [8], c fit obtained from our CCSD(T) calculations
with a (large) random grid of 3,000 geometries. Only the 8 largest coefficients are listed. The parameter A
and R gives the sum of the absolute values of, respectively, the anisotropic coefficients (all terms except
v0000(R)) and the 40 remaining (not listed) coefficients. See text

for l1 ≤ 6, m1 ≤ 4, l2 ≤ 2, and l ≤ 8 except for terms with l = l1, l2 = 2, which were
included only for l1 ≤ 3, m1 ≤ 2. This selection provide 48 angular coefficients at
each distance. The 8 largest angular coefficients obtained by Phillips et al. for R = 6
and 5 au are presented in Tables 1 and 2. The regular grid used by Phillips et al. consists
of 75 and 83 angular geometries for R = 6 and 5 au, respectively.

As a consequence, we carried out CCSD(T) calculations on two different angu-
lar grids: a small one which consists of the 75 and 83 angular geometries published
by Phillips et al. [8] and a large one which consist of 3,000 random geometries for
both R = 6 and 5 au. The employed random generator provides a uniform dis-
tribution of cosθ(cosθ ′) and φ(φ′), respectively on [−1, 1] and [0, 2π ], consis-
tent with the requirement of a uniform sampling of the differential solid angle
sinθdθdφ(sinθ ′dθ ′dφ′). We note that the symmetries of the system are included
in the chosen potential basis functions. Therefore, since the sampling is random,
there is no need to restrict the ab initio geometries according to the molecular
symmetries. The same 3,000 random geometries were used in Valiron et al. [3].

Results are presented in Tables 1 and 2 along with the results of Phillips et al. [8].
It can be observed that the choice of the grid does significantly affect some of the
listed coefficients of the fit. In particular, at R = 6 au, |v3025(R)| shows an increase
of 41 percent between the small and the large grid. We can also notice that the global
anisotropy, as given by the parameter A, is largely reduced when using the large grid.
Indeed this can be explained by summing the absolute values of the 40 smallest (not
listed) coefficients, as given by the parameter R: we observe that using the small grid
gives more weight to highly anisotropic terms, in particular at R = 6 au where the
potential is intrinsically less anisotropic than at 5 au. This effect is also observed in
the fit obtained by Phillips et al. [8] but to a lesser extent as a result of the three step
procedure used by these authors.
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Table 2 Angular coefficients
vl1m1l2l (in cm−1) at a H2O–H2
intermolecular separation
R = 5 au

Same notations as in Table 1
except bfit obtained from our
CCSD(T) calculations with an
angular grid of 83 angular
geometries taken from Phillips
et al. [8]

l1m1l2l va
l1m1l2l vb

l1m1l2l vc
l1m1l2l

0000 5449.8 5485.8 5454.7

0022 566.09 588.06 571.03

1001 1540.3 1618.1 1563.9

1023 1632.5 1658.6 1658.6

2224 1587.0 1611.1 1595.2

3003 −571.38 −587.50 −545.78

3203 1026.8 1057.2 1019.2

3225 771.03 766.72 743.84

A 10851 11645 10579

R 3155.6 3758.1 2881.5

The spurious increase of anisotropy on the small angular grids was in fact expected
since the least squares fit procedure must compensate a poor sampling of the angular
basis functions by introducing numerical artefacts. As discussed in Sect. 2.2, a well
suited angular sampling of orientations should give a good estimation of the scalar
products of the basis functions. A poor sampling of the basis functions is then charac-
terized by very large eigenvalues of the inverse S−1 matrix. The norm ||S−1|| therefore
provides an interesting probe of the insufficiencies of the grid and of the numerical
instabilities induced in the least squares fit procedure.

This point is illustrated in Fig. 1 which plots the convergence of the norm of the
inverse S−1 matrix with the number of geometries. It is shown that a random angu-
lar grid with less than 100 geometries gives a ||S−1|| larger than 10. About 1,000
geometries are needed to obtain a ||S−1|| lower than 2. It should be noted that the 75
regular geometries taken from Phillips et al. [8] gives a ||S−1|| of 358! By contrast,
3,000 random geometries provide a ||S−1|| of 1.40, indicating the reliability of the fit
employed by Valiron et al. [3]. We note also that beyond 3,000 geometries, the conver-
gence is slow and a modest lowering of ||S−1|| would require a significant additional
number of geometries.

The efficiency of a random sampling is also illustrated in Fig. 2.We investigated the
convergence of ||S−1|| by adding random orientations to the 75 regular geometries of
Phillips et al. [8]. As can be observed, ||S−1|| is decreased from 358 down to 13.7 by
using only 20 additional random geometries. This shows the fundamental advantage
of using extensive distribution of geometries, as discussed in Sect. 2.2.

Finally, the relevance of the error estimator introduced in Sect. 2.3 is illustrated
in Fig. 3 for the two leading angular coefficients v0000 and v1023 at R = 5 and 6 au.
It is observed that the error on these expansion coefficients is well predicted by our
estimator (Eq. 9), and that a convergence better than ∼1% is obtained as soon as the
number of random geometries exceeds ∼1,000.

It should be noted that, in practice, the selection of the final set of basis functions
can be obtained iteratively, as done by Valiron et al. [3] for H2O–H2. These authors
first selected a maximal expansion that included all anisotropies up to l1 = 12 for H2O
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Fig. 1 Convergence of the norm of the inverse S−1 matrix as a function of the number of random geometries
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Fig. 2 Convergence of the norm of the inverse S−1 matrix as a function of the number of random geometries
added to the 75 regular geometries taken from Phillips et al. [8]

and l2 = 6 for H2, resulting in 1150 tl1m1l2l functions. They then selected iteratively
all statistically significant terms using the following procedure at an intermolecular
distance of R = 5 au: they started the fit with a minimal expansion limited to the
single t0000 function and evaluated the 1,149 remaining terms by random quadratures
of < t j |V >N . All terms above 4 × ei , where ei is the mean error as defined in Eq. 9,
were then selected and added to t0000 providing a new starting expansion. This process
was iterated until convergence. The final set was composed of 149 angular functions
including anisotropies up to l1 = 11 and l2 = 6. We note that a cubic spline (radial)
interpolation of each expansion term was finally employed over the whole intermo-
lecular distance range and was smoothly connected with standard extrapolations to

123



600 J Math Chem (2012) 50:588–601

5300

5350

5400

5450

5500
A

ng
ul

ar
 c

oe
ffi

ci
en

t

0 1000 2000 3000

Number of geometries

1500

1550

1600

1650

1700

330

340

350

360

370

380

0 1000 2000 3000
690

700

710

720

730

740

(a) (b)

(c) (d)

v0000 |v0000|

v1023 v1023

Fig. 3 Convergence of the error estimator as a function of the number of (random) geometries for the
two leading angular coefficients v0000 and v1023: a v0000 at R = 5 au, b |v0000| at R = 6 au, c v1023 at
R = 5 au, d v1023 at R = 6 au

provide continuous radial expansion coefficients suitable for scattering calculations,
as explained in Valiron et al. [3].

4 Conclusion

We have investigated in this paper how to monitor the accuracy of the angular expan-
sion of rigid-rotor PES for molecule-molecule systems. We have shown that the use
of random grids for the sampling of the angular geometries combined with the Monte
Carlo theorem allows to estimate the mean accuracy on each expansion term deter-
mined by a least squares fit. The interest of our approach is illustrated by an application
to the H2O–H2 system, of great astrophysical interest. We have found that the inverse
of the S matrix, which gives the scalar products of the basis functions, provides a
useful probe of the insufficiencies of the grid and of the related numerical instabilities
induced by the least squares fit. We have also shown the advantage of using extensive
random grid which should contain more than ∼1,000 data points to ensure a conver-
gence better than ∼1% for the leading terms of the angular expansion. To conclude, we
note that our procedure was employed recently for a number of molecule-H2 systems
of astrophysical interest: CO–H2 [22], NH3–H2 [23], H2CO–H2 [24], SO2–H2 [25],
HDO–H2 [17] and ND2H–H2 [26].
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